Hydrometeorology in the Red Sea region: An analysis based on observations and climate downscaling simulations

NOAA EMC Seminar November 28, 2017

Shannon R. Davis Physical Oceanography Department Woods Hole Oceanographic Institution sdavis@whoi.edu

A Significant Crossroads

- Atmospheric dust
 source regions
 (Prospero and Carlton,
 1972, Hickey and
 Goudie, 2007)
- Mesoscale rainfall (Rodrigues et al. 2005, Viste and Sorteburg, 2013)
- Tropical cyclogenesis
 (Wu et al., 2003, Hill et al., 2003, Rodrigues et al. 2005, Viste and Sorteburg, 2013)

Tokar Gap

Length ~ 430 km

Width ~ 190 km (Entrance) ~ 60 km (Exit Aperture)

> Ethiopian Highlands

Red Sea

Previous studies-general characteristics

- Important to regional dust events
- Seasonal river valley of coastal Sudan, flows between the Red Sea Hills
- Frequency:- Quasi-diurnal
- Amplified land-sea breeze cycle (LSBC) or valley wind process (*hypothesized*)

The TGJ: New Findings

- More than an enhanced valley wind or LSBC
- Tied to planetary scale atmospheric processes,
 - Seasonality controlled by the ITCZ position and the onset of the Indian Ocean monsoons
- Quasi-diurnal characteristics derived from the behavior of the surface ITCZ and channeled monsoon airmass
- "Moist" gap wind jet
- Significant mechanism of moisture transport/convergence to East Africa and Arabian Peninsula

Seasonality: Role of the ITCZ

6

Seasonality: Role of the ITCZ

Seasonality: Role of the ITCZ

Model and Climate Downscaling Configuration

- Following Jiang et al. 2009
- WRF (Weather Research and Forecasting Model)
- Dynamic core 3.0.1.1 (2007/08)
- Horizontal resolution :
 - 100km (4-40N,12-68 W)
 - 10km within 8-30N, 46-32W
 - Centered about air-sea buoy and meteorological tower locations
- 35 sigma vertical levels
- Time steps:
 - 1 hour 10km grid
 - 3 hours 100km grid
- Forcing NCEP FNL (Final Global Analysis)
- Yonsei University (YSU) PBL scheme
- 3 hourly reinitializations (Lo et al., 2008)

Model Observation

Comparisons

Within lower 6km

- 1.16m/s RMSE wind speed
- Corresponding 1.38 °C and 0.85g/kg RMSEs for temperature and water vapor mixing ratio
- no apparent bias

Location	1)Tabuk	2)Hail	3)Jeddah	4)Abha	5)South of the Valley	6)Farafra
Nation	Saudi	Saudi	Saudi	Saudi	Egyptian	Egyptian
Туре	N. Coastal highlands	C. Inland Highlands	C. Coastal	S. Coastal Highlands	NW. Coastal	NW Inland
Elevation	768 m	1002 m	19 m	2093 m	78 m	96 m

Model Validation

Moisture Pathways and Orographic Influences

- Somali/Findlater/East African Jet
 - Findlater et al. (1969)
 - Krishnamurti et al. (1980)
- Red Sea Moisture
 - Viste et al. (2011)

Turkana Jet

- Kinuthia et al. (1982)
- Indeje et al. (2011)

New Findings

Previously Established

Monsoon Inflow: Cross Sections Along the Pathway

7/12/2008 Color contours θ at 10m Solid contours: 250m elev.

3 hr/100km

332.6

Etesians

ITCZ

0 UTC (3:00 AM LST)

Harmattans

Monsoons

Tokar Gap Jet Case Study (10 km/1 hr) for 7/12/2008

Pre let Onset. Sea breeze

+ 2 hrs 17 TG let Onset and secondary gap iets

22 UTC (1:00 AM LST next day)

Case Study Cross Sections on 7/12/2008

Influence on Moisture Fluxes

- Enhancement of near surface winds, increasing the frictional velocity u* in particular, thus enhancing the latent heat fluxes from the Red Sea surface
- Monsoon enhanced lateral moisture flux

$$flux = \frac{1}{g} \int_{sfc}^{8000Pa} \upsilon_n q \, dp \,,$$

Latent heat Flux and Down Wind Moisture Evolution

Integrated Lateral Moisture fluxes

A representative vertical cross section of the moisture flux (q*yn)

Role in the Regional Moisture Budget

Mesoscale Convective Complexes

MCC's throughout TGJ event

WRF winds overlaying TRMM precipitation observations

7/03

7/04

7/10

7/12

7/15a

7/15d

Impacts of the TGJ

Ties To Atlantic Tropical Activity

- Sahelian Rainfall and Hurricanes (Grey et al. 1990, Landsea et al. 1991)
- Hurricane Alberto (Hill et al. 2003)
- Hurricane Isabel (Rodrigues et al. 2005)
- Sandy (NASA, 2013)

The Tokar Gap Jet (TGJ): Key Points

- Seasonal feature directly tied to the migration of the ITCZ and Indian Ocean Monsoons
- Not just a coastal gap wind jet tied to local wind regimes but a feature tied to the surface dynamics of the ITCZ in East Africa
- Moist gap wind jet
- Part of a network of orographic flows conveying moist monsoon airmasses to East Africa and the Red Sea
- Based on an analysis of the vertically integrated horizontal moisture fluxes, it was seen that the TGJ played a prominent role in the atmospheric moisture transport into the central and southern Red Sea
- Mechanism of orgraphic uplift and convergence in the lateral moisture fluxes behind mesoscale convective storm development

Davis, Shannon R., L. Pratt and H. Jiang: 2015: The Tokar Gap Jet: Regional Circulation, Diurnal Variability, and Moisture Transport Based on Numerical Simulations. J. Climate, 28, 5885–5907, ₂₉ doi: 10.1175/JCLI-D-14-00635.1.

the local (coastal) atmosphere

7/11/2008; Color contours θ at 10m;Solid contours: 250m elev.

7/11/2008; Color contours θ at 10m;Solid contours: 250m elev.

The LSBC Amplitudes: Observed and Simulateds

Topography and Comvergence in the LSBC

34

Buoy/Red Sea Precipitation Rates

35

Summary

- While the ITCZ plays a role in the seasonality (i.e. monsoon forcing) of the TGJ, it is also a very dynamic feature in the surface/lower atmospheric flow with strong diurnal characteristics
- The convergence of distinct wind regimes is seen in conjunction with the TGJ onset
- The monsoon forcing of the TGJ is unique relative to other gap jets, its a "moist gap wind"
- This characteristic is central to its role in regional moisture transport, and regional precipitation
- The LSBC is prolific year round
- Amplitude of the LSBC is significantly enhanced in the presence of steep topography
- The LSBC can be a mechanism of cloud formation and precipitation around the basin in response to the LSBC convergence.

<u>Acknowledgements</u>

- J. Thomas Farrar
- Houshuo Jiang
- Lawrence J. Pratt
- Robert A. Weller
- National Science Foundation (NSF) grants OCE-1435665, OCE0927017
- National Aeronautics and Space Administration (NASA) grant NNX14AM71G
- the King Abdullah University of Science and Technology (KAUST)
- DOD (MURI) Grant N000141110087, administered by the Office of Naval Research